skip to main content


Search for: All records

Creators/Authors contains: "Fuentes, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radio images of protoplanetary disks demonstrate that dust grains tend to organize themselves into rings. These rings may be a consequence of dust trapping within gas pressure maxima, wherein the local high dust-to-gas ratio is expected to trigger the formation of planetesimals and eventually planets. We revisit the behavior of dust near gas pressure perturbations enforced by a planet in two-dimensional, shearing-box simulations. While dust grains collect into generally long-lived rings, particles with a small Stokes parameter τ s < 0.1 tend to advect out of the ring within a few drift timescales. Scaled to the properties of ALMA disks, we find that rings composed of larger particles ( τ s ≥ 0.1) can nucleate a dust clump massive enough to trigger pebble accretion, which proceeds to ingest the entire dust ring well within ∼1 Myr. To ensure the survival of the dust rings, we favor a nonplanetary origin and typical grain size τ s ≲ 0.05–0.1. Planet-driven rings may still be possible but if so we would expect the orbital distance of the dust rings to be larger for older systems. 
    more » « less
  2. Abstract

    Two orthologues of the gene encoding the Na+-Clcotransporter (NCC), termednccaandnccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Clcotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater,nccamRNA was found only in the gill andnccbonly in the intestine, whereas both were found in the kidney. IntestinalnccbmRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increasednccbmRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinalnccbmRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.

     
    more » « less
  3. Abstract

    Stellar evolution models calculate convective boundaries using either the Schwarzschild or Ledoux criterion, but confusion remains regarding which criterion to use. Here we present a 3D hydrodynamical simulation of a convection zone and adjacent radiative zone, including both thermal and compositional buoyancy forces. As expected, regions that are unstable according to the Ledoux criterion are convective. Initially, the radiative zone adjacent to the convection zone is Schwarzschild unstable but Ledoux stable due to a composition gradient. Over many convective overturn timescales, the convection zone grows via entrainment. The convection zone saturates at the size originally predicted by the Schwarzschild criterion, although in this final state the Schwarzschild and Ledoux criteria agree. Therefore, the Schwarzschild criterion should be used to determine the size of stellar convection zones, except possibly during short-lived evolutionary stages in which entrainment persists.

     
    more » « less
  4. Abstract Proton radioactivity was discovered exactly 50 years ago. First, this nuclear decay mode sets the limit of existence on the nuclear landscape on the neutron-deficient side. Second, it comprises fundamental aspects of both quantum tunnelling as well as the coupling of (quasi)bound quantum states with the continuum in mesoscopic systems such as the atomic nucleus. Theoretical approaches can start either from bound-state nuclear shell-model theory or from resonance scattering. Thus, proton-radioactivity guides merging these types of theoretical approaches, which is of broader relevance for any few-body quantum system. Here, we report experimental measurements of proton-emission branches from an isomeric state in 54m Ni, which were visualized in four dimensions in a newly developed detector. We show that these decays, which carry an unusually high angular momentum, ℓ = 5 and ℓ = 7, respectively, can be approximated theoretically with a potential model for the proton barrier penetration and a shell-model calculation for the overlap of the initial and final wave functions. 
    more » « less
  5. Abstract

    This article presents the results of a week of observations around the 2 July 2019, total Chilean eclipse. The eclipse occurred between 19:22 and 21:46 UTC, with complete sun disc obscuration at 20:38–20:40 UTC (16:38–16:40 LT) over the Andes Lidar Observatory (ALO) at (30.3°S, 70.7°W). Observations were carried out using ALO instrumentation with the goal to observe possible eclipse‐induced effects on the mesosphere and lower thermosphere region (MLT; 75–105 km altitude). To complement our data set, we have also utilized TIMED/SABER temperatures and ionosonde electron density measurements taken at the University of La Serena's Juan Soldado Observatory. Observed events include an unusual fast, bow‐shaped gravity wave structure in airglow images, mesosphere temperature mapper brightness as well as in lidar temperature with 150 km horizontal wavelength 24 min observed period, and vertical wavelength of 25 km. Also, a strong zonal wind shear above 100 km in meteor radar scans as well as the occurrence of a sporadic E layer around 100 km from ionosonde measurements. Finally, variations in temperature and density and the presence of a descending sporadic sodium layer near 98 km were seen in lidar data. We discuss the effects of the eclipse in the MLT, which can shed light on a sparse set of measurements during this type of event. Our results point out several effects of eclipse‐associated changes in the atmosphere below and above but not directly within the MLT.

     
    more » « less
  6. Abstract

    The topography of eastern Africa, namely, the Ethiopian Highlands and Marrah Mountains have been shown to play a key role in the genesis of African Easterly Waves (AEWs) through convective initiation in that region. Topographic influences on the African Easterly Jet, evolution and energetics of AEWs, and rainfall production across northern tropical Africa are examined here. The Weather Research and Forecasting model is employed to simulate the climate over a 60‐day period for three years (2004, 2005, and 2006) for three cases with varying topography: realistic, half‐height, and no topography. An energetics analysis for the resulting AEWs reveals that wave development by barotropic and baroclinic processes weakens when topography is flattened. These results show that topography in Africa plays a significant role in the wave development as they propagate westward, not only in their initiation over East Africa.

     
    more » « less